Neolithic Revolution
The Neolithic Revolution, also known as the First Agricultural Revolution, was the wide-scale transition of many human cultures during the Neolithic period in Afro-Eurasia from a lifestyle of hunting and gathering to one of agriculture and settlement, making an increasingly large population possible. These settled communities permitted humans to observe and experiment with plants, learning how they grew and developed. This new knowledge led to the domestication of plants into crops.

Archaeological data indicate that the domestication of various types of plants and animals happened in separate locations worldwide, starting in the geological epoch of the Holocene 11,700 years ago, after the end of the last Ice Age. It was humankind's first historically verifiable transition to agriculture. The Neolithic Revolution greatly narrowed the diversity of foods available, resulting in a decrease in the quality of human nutrition compared with that obtained previously from hunting and foraging. However, because food production became more efficient, it released humans to invest their efforts in other activities and was thus "ultimately necessary to the rise of modern civilization by creating the foundation for the later process of industrialization and sustained economic growth".
The Neolithic Revolution involved much more than the adoption of a limited set of food-producing techniques. During the next millennia, it transformed the small and mobile groups of hunter-gatherers that had hitherto dominated human prehistory into sedentary (non-nomadic) societies based in built-up villages and towns. These societies radically modified their natural environment by means of specialized food-crop cultivation, with activities such as irrigation and deforestation which allowed the production of surplus food. Other developments that are found very widely during this era are the domestication of animals, pottery, polished stone tools, and rectangular houses. In many regions, the adoption of agriculture by prehistoric societies caused episodes of rapid population growth, a phenomenon known as the Neolithic demographic transition.
These developments, sometimes called the Neolithic package, provided the basis for centralized administrations and political structures, hierarchical ideologies, depersonalized systems of knowledge (e.g. writing), densely populated settlements, specialization and division of labour, more trade, the development of non-portable art and architecture, and greater property ownership. The earliest known civilization developed in Sumer in southern Mesopotamia (c. 6,500 BP); its emergence also heralded the beginning of the Bronze Age.
The relationship of the aforementioned Neolithic characteristics to the onset of agriculture, their sequence of emergence, and their empirical relation to each other at various Neolithic sites remains the subject of academic debate. It is usually understood to vary from place to place, rather than being the outcome of universal laws of social evolution.
Background
Prehistoric hunter-gatherers had different subsistence requirements and lifestyles from agriculturalists. Hunter-gatherers were often highly mobile and migratory, living in temporary shelters and in small tribal groups, and having limited contact with outsiders. Their diet was well-balanced[citation needed] though heavily dependent on what the environment could provide each season. In contrast, because the surplus and plannable supply of food provided by agriculture made it possible to support larger population groups, agriculturalists lived in more permanent dwellings in more densely populated settlements than what could be supported by a hunter-gatherer lifestyle. The agricultural communities' seasonal need to plan and coordinate resource and manpower encouraged division of labour, which gradually led to specialization of labourers and complex societies. The subsequent development of trading networks to exchange surplus commodities and services brought agriculturalists into contact with outside groups, which promoted cultural exchanges that led to the rise of civilizations and technological evolutions.[full citation needed]
However, higher population and food abundance did not necessarily correlate with improved health. Reliance on a very limited variety of staple crops can adversely affect health even while making it possible to feed more people. As an example from the Americas, maize is deficient in certain essential amino acids (lysine and tryptophan) and is a poor source of iron. The phytic acid it contains may inhibit nutrient absorption. Other factors that likely affected the health of early agriculturalists and their domesticated livestock would have been increased numbers of parasites and disease-bearing pests associated with human waste and contaminated food and water supplies. Fertilizers and irrigation may have increased crop yields but also would have promoted proliferation of insects and bacteria in the local environment while grain storage attracted additional insects and rodents.
Agricultural transition



The term 'neolithic revolution' was invented by V. Gordon Childe in his book Man Makes Himself (1936). Childe introduced it as the first in a series of agricultural revolutions in Middle Eastern history, calling it a "revolution" to denote its significance, the degree of change to communities adopting and refining agricultural practices.
The beginning of this process in different regions has been dated from 10,000 to 8,000 BCE in the Fertile Crescent, and perhaps 8000 BCE in the Kuk Early Agricultural Site of Papua New Guinea in Melanesia. Everywhere, this transition is associated with a change from a largely nomadic hunter-gatherer way of life to a more settled, agrarian one, with the domestication of various plant and animal species – depending on the species locally available, and influenced by local culture. Archaeological research in 2003 suggests that in some regions, such as the Southeast Asian peninsula, the transition from hunter-gatherer to agriculturalist was not linear, but region-specific.
- Modern distribution of the haplotypes of PPNB farmers
- Genetic distance between PPNB farmers and modern populations
South Asia
The earliest Neolithic site in South Asia is Mehrgarh, dated to between 6500 and 5500 BCE, in the Kachi plain of Balochistan, Pakistan; the site has evidence of farming (wheat and barley) and herding (cattle, sheep and goats).
There is strong evidence for causal connections between the Near-Eastern Neolithic and that further east, up to the Indus Valley. There are several lines of evidence that support the idea of connection between the Neolithic in the Near East and in the Indian subcontinent. The prehistoric site of Mehrgarh in Baluchistan (modern Pakistan) is the earliest Neolithic site in the north-west Indian subcontinent, dated as early as 8500 BCE.
Neolithic domesticated crops in Mehrgarh include more than 90% barley and a small amount of wheat. There is good evidence for the local domestication of barley and the zebu cattle at Mehrgarh, but the wheat varieties are suggested to be of Near-Eastern origin, as the modern distribution of wild varieties of wheat is limited to Northern Levant and Southern Turkey.
A detailed satellite map study of a few archaeological sites in the Baluchistan and Khybar Pakhtunkhwa regions also suggests similarities in early phases of farming with sites in Western Asia. Pottery prepared by sequential slab construction, circular fire pits filled with burnt pebbles, and large granaries are common to both Mehrgarh and many Mesopotamian sites.
The postures of the skeletal remains in graves at Mehrgarh bear strong resemblance to those at Ali Kosh in the Zagros Mountains of southern Iran. Despite their scarcity, the Carbon-14 and archaeological age determinations for early Neolithic sites in Southern Asia exhibit remarkable continuity across the vast region from the Near East to the Indian Subcontinent, consistent with a systematic eastward spread at a speed of about 0.65 km/yr.
Causes
This section is missing information about more recent theories and includes some outdated/rejected theories.(October 2024) |
The most prominent of several theories (not mutually exclusive) as to factors that caused populations to develop agriculture include:
- The Oasis Theory, originally proposed by Raphael Pumpelly in 1908, popularized by V. Gordon Childe in 1928 and summarised in Childe's book Man Makes Himself. This theory maintains that as the climate got drier due to the Atlantic depressions shifting northward, communities contracted to oases where they were forced into close association with animals, which were then domesticated together with planting of seeds. However, this theory now has little support amongst archaeologists because subsequent climate data suggests that the region was getting wetter rather than drier.
- The Hilly Flanks hypothesis, proposed by Robert John Braidwood in 1948, suggests that agriculture began in the hilly flanks of the Taurus and Zagros Mountains, where the climate was not drier as Childe had believed, and fertile land supported a variety of plants and animals amenable to domestication.
- The Feasting model by Brian Hayden suggests that agriculture was driven by ostentatious displays of power, such as giving feasts, to exert dominance. This required assembling large quantities of food, which drove agricultural technology.
- The Demographic theories proposed by Carl Sauer and adapted by Lewis Binford and Kent Flannery posit an increasingly sedentary population that expanded up to the carrying capacity of the local environment and required more food than could be gathered. Various social and economic factors helped drive the need for food.
- The evolutionary/intentionality theory, developed by David Rindos and others, considers agriculture as an evolutionary adaptation of plants and humans. Starting with domestication by protection of wild plants, it resulted specialization of location and then complete domestication.[citation needed]
- Peter Richerson, Robert Boyd, and Robert Bettinger make a case for the development of agriculture coinciding with an increasingly stable climate at the beginning of the Holocene. Ronald Wright's book and Massey Lecture Series A Short History of Progress popularized this hypothesis.
- Leonid Grinin argues that whatever plants were cultivated, the independent invention of agriculture always occurred in special natural environments (e.g., South-East Asia). It is supposed that the cultivation of cereals started somewhere in the Near East: in the hills of Israel or Egypt. So Grinin dates the beginning of the agricultural revolution within the interval 12,000 to 9,000 BP, though in some cases the first cultivated plants or domesticated animals' bones are even of a more ancient age of 14–15 thousand years ago.
- Andrew Moore suggested that the Neolithic Revolution originated over long periods of development in the Levant, possibly beginning during the Epipaleolithic. In "A Reassessment of the Neolithic Revolution", Frank Hole further expanded the relationship between plant and animal domestication. He suggested the events could have occurred independently during different periods of time, in as yet unexplored locations. He noted that no transition site had been found documenting the shift from what he termed immediate and delayed return social systems.[further explanation needed] He noted that the full range of domesticated animals (goats, sheep, cattle and pigs) were not found until the sixth millennium BCE at Tell Ramad. Hole concluded that "close attention should be paid in future investigations to the western margins of the Euphrates basin, perhaps as far south as the Arabian Peninsula, especially where wadis carrying Pleistocene rainfall runoff flowed."
Consequences
Social change

Despite the significant technological advance and advancements in knowledge, arts and trade, the Neolithic revolution did not lead immediately to a rapid growth of population. Its benefits appear to have been offset by various adverse effects, mostly diseases and warfare.
The introduction of agriculture has not necessarily led to unequivocal progress. The nutritional standards of the growing Neolithic populations were inferior to that of hunter-gatherers. Several ethnological and archaeological studies conclude that the transition to cereal-based diets caused a reduction in life expectancy and stature, an increase in infant mortality and infectious diseases, the development of chronic, inflammatory or degenerative diseases (such as obesity, type 2 diabetes and cardiovascular diseases) and multiple nutritional deficiencies, including vitamin deficiencies, iron deficiency anemia and mineral disorders affecting bones (such as osteoporosis and rickets) and teeth. Average height for Europeans went down from 178 centimetres (5 ft 10 in) for men and 168 centimetres (5 ft 6 in) for women to 165 and 155 centimetres (5 ft 5 in and 5 ft 1 in) respectively, and it took until the twentieth century for average height for Europeans to return to the pre-Neolithic Revolution levels.
The traditional view is that agricultural food production supported a denser population, which in turn supported larger sedentary communities, the accumulation of goods and tools, and specialization in diverse forms of new labor. Food surpluses made possible the development of a social elite who were not otherwise engaged in agriculture, industry or commerce, but dominated their communities by other means and monopolized decision-making. Nonetheless, larger societies made it more feasible for people to adopt diverse decision making and governance models. Jared Diamond (in The World Until Yesterday) identifies the availability of milk and cereal grains as permitting mothers to raise both an older (e.g. 3 or 4 year old) and a younger child concurrently. The result is that a population can increase more rapidly. Diamond, in agreement with feminist scholars such as V. Spike Peterson, points out that agriculture brought about deep social divisions and encouraged gender inequality. This social reshuffle is traced by historical theorists, like Veronica Strang, through developments in theological depictions. Strang supports her theory through a comparison of aquatic deities before and after the Neolithic Agricultural Revolution, most notably the Venus of Lespugue and the Greco-Roman deities such as Circe or Charybdis: the former venerated and respected, the latter dominated and conquered. The theory, supplemented by the widely accepted assumption from Parsons that "society is always the object of religious veneration", argues that with the centralization of government and the dawn of the Anthropocene, roles within society became more restrictive and were rationalized through the conditioning effect of religion; a process that is crystallized in the progression from polytheism to monotheism.
Subsequent revolutions

Andrew Sherratt has argued that following upon the Neolithic Revolution was a second phase of discovery that he refers to as the secondary products revolution. Animals, it appears, were first domesticated purely as a source of meat. The Secondary Products Revolution occurred when it was recognised that animals also provided a number of other useful products. These included:
- hides and skins (from undomesticated animals)
- manure for soil conditioning (from all domesticated animals)
- wool (from sheep, llamas, alpacas, and Angora goats)
- milk (from goats, cattle, yaks, sheep, horses, and camels)
- traction (from oxen, onagers, donkeys, horses, camels, and dogs)
- guarding and herding assistance (dogs)
Sherratt argued that this phase in agricultural development enabled humans to make use of the energy possibilities of their animals in new ways, and permitted permanent intensive subsistence farming and crop production, and the opening up of heavier soils for farming. It also made possible nomadic pastoralism in semi arid areas, along the margins of deserts, and eventually led to the domestication of both the dromedary and Bactrian camel. Overgrazing of these areas, particularly by herds of goats, greatly extended the areal extent of deserts.
Diet and health
Compared to foragers, Neolithic farmers' diets were higher in carbohydrates but lower in fibre, micronutrients, and protein. This led to an increase in the frequency of carious teeth and slower growth in childhood and increased body fat[clarification needed], and studies have consistently found that populations around the world became shorter after the transition to agriculture. This trend may have been exacerbated by the greater seasonality of farming diets and with it the increased risk of famine due to crop failure.
Throughout the development of sedentary societies, disease spread more rapidly than it had during the time in which hunter-gatherer societies existed. Inadequate sanitary practices and the domestication of animals may explain the rise in deaths and sickness following the Neolithic Revolution, as diseases jumped from the animal to the human population. Some examples of infectious diseases spread from animals to humans are influenza, smallpox, and measles. Ancient microbial genomics has shown that progenitors to human-adapted strains of Salmonella enterica infected up to 5,500 year old agro-pastoralists throughout Western Eurasia, providing molecular evidence for the hypothesis that the Neolithization process facilitated the emergence of Salmonella entericia.
In concordance with a process of natural selection, the humans who first domesticated the big mammals quickly built up immunities to the diseases as within each generation the individuals with better immunities had better chances of survival. In their approximately 10,000 years of shared proximity with animals, such as cows, Eurasians and Africans became more resistant to those diseases compared with the indigenous populations encountered outside Eurasia and Africa. For instance, the population of most Caribbean and several Pacific Islands have been completely wiped out by diseases. 90% or more of many populations of the Americas were wiped out by European and African diseases before recorded contact with European explorers or colonists. Some cultures like the Inca Empire did have a large domestic mammal, the llama, but llama milk was not drunk, nor did llamas live in a closed space with humans, so the risk of contagion was limited. According to bioarchaeological research, the effects of agriculture on dental health in Southeast Asian rice farming societies from 4000 to 1500 BP was not detrimental to the same extent as in other world regions.
Jonathan C. K. Wells and Jay T. Stock have argued that the dietary changes and increased pathogen exposure associated with agriculture profoundly altered human biology and life history, creating conditions where natural selection favoured the allocation of resources towards reproduction over somatic effort.
Comparative chronology
This section may require cleanup to meet Wikipedia's quality standards. The specific problem is: Neolithic Chronology table/template does not display on mobile.(April 2025) |
See also
- Upper Paleolithic revolution
- Broad spectrum revolution
- Secondary products revolution
- Urban revolution
- Industrial Revolution
- Green Revolution
Further reading
- Taiz, Lincoln. "Agriculture, plant physiology, and human population growth: past, present, and future." Theoretical and Experimental Plant Physiology 25 (2013): 167–181.
References
- Jean-Pierre Bocquet-Appel (29 July 2011). "When the World's Population Took Off: The Springboard of the Neolithic Demographic Transition". Science. 333 (6042): 560–561. Bibcode:2011Sci...333..560B. doi:10.1126/science.1208880. PMID 21798934. S2CID 29655920.
- Pollard, Elizabeth; Rosenberg, Clifford; Tigor, Robert (2015). Worlds together, worlds apart. Vol. 1 (concise ed.). New York: W.W. Norton & Company. p. 23. ISBN 978-0-393-25093-0.
- Compare:Lewin, Roger (18 February 2009) [1984]. "35: The origin of agriculture and the first villagers". Human Evolution: An Illustrated Introduction (5 ed.). Malden, Massachusetts: John Wiley & Sons (published 2009). p. 250. ISBN 978-1-4051-5614-1. Retrieved 20 August 2017.
[...] The Neolithic transition involved increasing sedentism and social complexity, which was usually followed by the gradual adoption of plant and animal domestication. In some cases, however, plant domestication preceded sedentism, particularly in the New World.
- "International Stratigraphic Chart". International Commission on Stratigraphy. Archived from the original on 12 February 2013. Retrieved 6 December 2012.
- Armelagos, George J. (2014). "Brain Evolution, the Determinates of Food Choice, and the Omnivore's Dilemma". Critical Reviews in Food Science and Nutrition. 54 (10): 1330–1341. doi:10.1080/10408398.2011.635817. ISSN 1040-8398. PMID 24564590. S2CID 25488602.
- Wells, Jonathan C. K.; Stock, Jay T. (2020). "Life History Transitions at the Origins of Agriculture: A Model for Understanding How Niche Construction Impacts Human Growth, Demography and Health". Frontiers in Endocrinology. 11 325. doi:10.3389/fendo.2020.00325. ISSN 1664-2392. PMC 7253633. PMID 32508752.
- Larsen, Clark Spencer (1 June 2006). "The agricultural revolution as environmental catastrophe: Implications for health and lifestyle in the Holocene". Quaternary International. Impact of rapid environmental changes on humans and ecosystems. 150 (1): 12–20. Bibcode:2006QuInt.150...12L. doi:10.1016/j.quaint.2006.01.004. ISSN 1040-6182. Archived from the original on 5 November 2019. Retrieved 10 July 2020.
- Weisdorf, Jacob L. (September 2005). "From Foraging To Farming: Explaining The Neolithic Revolution" (PDF). Journal of Economic Surveys. 19 (4): 561–586. doi:10.1111/j.0950-0804.2005.00259.x. S2CID 42777045. Archived (PDF) from the original on 20 July 2018. Retrieved 12 June 2023.
- Nowak, Marek (2022). "Do We Finally Know What the Neolithic Is?". Open Archaeology. 8 (1): 332–342. doi:10.1515/opar-2020-0204.
- "Violence and its causes". unesdoc.unesco.org. Retrieved 18 October 2023.
- Childe, Vere Gordon (1950). "The Urban Revolution". The Town Planning Review. 21 (1). Liverpool University Press: 3–17. doi:10.3828/tpr.21.1.k853061t614q42qh. ISSN 0041-0020. JSTOR 40102108. S2CID 39517784.
- Violatti, Cristian (2 April 2018). "Neolithic Period". World History Encyclopedia.
- "The Slow Birth of Agriculture" Archived 1 January 2011 at the Wayback Machine, Heather Pringle
- "Wizard Chemi Shanidar". EMuseum. Minnesota State University. Archived from the original on 18 June 2008.
- The Cambridge World History of Food. Cambridge University Press. p. 46.
- Zalloua, Pierre A.; Matisoo-Smith, Elizabeth (6 January 2017). "Mapping Post-Glacial expansions: The Peopling of Southwest Asia". Scientific Reports. 7 40338. Bibcode:2017NatSR...740338P. doi:10.1038/srep40338. ISSN 2045-2322. PMC 5216412. PMID 28059138.
- Diamond, J.; Bellwood, P. (2003). "Farmers and Their Languages: The First Expansions". Science. 300 (5619): 597–603. Bibcode:2003Sci...300..597D. CiteSeerX 10.1.1.1013.4523. doi:10.1126/science.1078208. PMID 12714734. S2CID 13350469.
- Childe, Vere Gordon (1936). Man Makes Himself. London: Watts & Company.
- Brami, Maxime N. (1 December 2019). "The Invention of Prehistory and the Rediscovery of Europe: Exploring the Intellectual Roots of Gordon Childe's 'Neolithic Revolution' (1936)". Journal of World Prehistory. 32 (4): 311–351. doi:10.1007/s10963-019-09135-y. ISSN 1573-7802. S2CID 211663314.
- "7.6: Neolithic Revolution". Social Sci LibreTexts. 28 April 2018. Retrieved 18 October 2023.
- Graeme Barker (2009). The Agricultural Revolution in Prehistory: Why did Foragers become Farmers?. Oxford University Press. ISBN 978-0-19-955995-4.
- Thissen, L. "Appendix I, The CANeW 14C databases, Anatolia 10,000–5000 cal. BC." in: F. Gérard and L. Thissen (eds.), The Neolithic of Central Anatolia. Internal developments and external relations during the 9th–6th millennia cal BC, Proc. Int. CANeW Round Table, Istanbul 23–24 November 2001, (2002)
- Denham, Tim P.; Haberle, S. G.; Fullagar, R; Field, J; Therin, M; Porch, N; Winsborough, B (2003). "Origins of Agriculture at Kuk Swamp in the Highlands of New Guinea" (PDF). Science. 301 (5630): 189–193. doi:10.1126/science.1085255. PMID 12817084. S2CID 10644185. Retrieved 4 December 2019.
- "Kuk Early Agricultural Site". UNESCO World Heritage Centre. Archived from the original on 22 January 2023. Retrieved 26 December 2019.
- Kealhofer, Lisa (2003). "Looking into the gap: land use and the tropical forests of southern Thailand". Asian Perspectives. 42 (1): 72–95. doi:10.1353/asi.2003.0022. hdl:10125/17181. S2CID 162916204. Archived from the original on 22 September 2024 – via ScholarSpace.
- Harris, David R, ed. (17 April 1996). Origins & Spread Agric Past. Smithsonian. ISBN 978-1-56098-676-8 – via Google Books.
- Zohary, Daniel (1 April 1999). "Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East". Genetic Resources and Crop Evolution. 46 (2): 133–142. Bibcode:1999GRCEv..46..133Z. doi:10.1023/A:1008692912820. S2CID 9529895 – via Springer Link.
- Hillman, G. C; Davies, M. S. (1992). "Domestication rate in wild wheats and barley under primitive cultivation: preliminary results and archaeological implications of field measurements of selection coefficient". In Anderson, PC (ed.). Préhistoire de l'agriculture: nouvelles approches expérimentales et ethnographiques. Monographie du CRA 6. Paris: Editions du CNRS. pp. 124–132. ISBN 978-2-222-04546-5.
- Weiss, Ehud; Kislev, Mordechai E.; Hartmann, Anat (2006). "Autonomous Cultivation Before Domestication". Science. 312 (5780): 1608–1610. doi:10.1126/science.1127235. PMID 16778044. S2CID 83125044.
- "Tamed 11,400 Years Ago, Figs Were Likely First Domesticated Crop". ScienceDaily. 4 June 2006. Archived from the original on 6 October 2019. Retrieved 28 February 2018.
- Flannery, Kent V. (1969). "Origins and ecological effects of early domestication in Iran and the Near East". In Ucko, Peter John; Dimbleby, G. W. (eds.). The Domestication and Exploitation of Plants and Animals. New Brunswick, New Jersey: Transaction Publishers (published 2007). p. 89. ISBN 978-0-202-36557-2. Retrieved 12 January 2019.
Our earliest evidence for this new technology comes [...] from the lowland steppe of Khuzistan. [...] Once irrigation appeared, the steppe greatly increased its carrying capacity and became, in fact, the dominant growth centre of the Zagros region between 5500 and 4000 B.C.
- Lawton, H. W.; Wilke, P. J. (1979). "Ancient Agricultural Systems in Dry Regions of the Old World". In Hall, A. E.; Cannell, G. H.; Lawton, H.W. (eds.). Agriculture in Semi-Arid Environments. Ecological Studies. Vol. 34 (reprint ed.). Berlin: Springer Science & Business Media (published 2012). p. 13. ISBN 978-3-642-67328-3. Retrieved 12 January 2019.
Archeological investigations on the Deh Luran Plain of Iran have provided a model for the internal dynamics of the culture sequence of prehistoric Khuzistan [...]. Somewhere between 5500 and 5000 B.C. in the Sabz phase of the Deh Luran Plain, irrigation water was apparently diverted from stream channels in a fashion similar to that employed in early Mesopotamia.
-
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived 16 October 2017 at the Wayback Machine Jones, Martin K.; Kovaleva, Olga (18 July 2018). "Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes". PLOS ONE. 13 (7) e0196652. Bibcode:2018PLoSO..1396652L. doi:10.1371/journal.pone.0196652. ISSN 1932-6203. PMC 6051582. PMID 30020920.
- "The Development of Agriculture". Genographic Project. Archived from the original on 14 April 2016. Retrieved 21 July 2017.
- McGourty, Christine (22 November 2002). "Origin of dogs traced". BBC News. Archived from the original on 2 November 2019. Retrieved 29 November 2006.
- L. Copeland; P. Wescombe (1966). Inventory of Stone-Age Sites in Lebanon: North, South and East-Central Lebanon. Imprimerie Catholique. p. 89.
- Fleisch, Henri., Notes de Préhistoire Libanaise : 1) Ard es Saoude. 2) La Bekaa Nord. 3) Un polissoir en plein air. BSPF, vol. 63.
- Diamond, Jared (1997). Guns, Germs, and Steel. New York: Norton Press. ISBN 978-0-393-31755-8.
{{cite book}}
: CS1 maint: publisher location (link) - Nadel, Dani; Weiss, Ehud; Groman-Yaroslavski, Iris (23 November 2016). "Composite Sickles and Cereal Harvesting Methods at 23,000-Years-Old Ohalo II, Israel". PLOS ONE. 11 (11) e0167151. Bibcode:2016PLoSO..1167151G. doi:10.1371/journal.pone.0167151. ISSN 1932-6203. PMC 5120854. PMID 27880839.
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
- Enzel, Yehouda; Bar-Yosef, Ofer (2017). Quaternary of the Levant. Cambridge University Press. p. 335. ISBN 978-1-107-09046-0.
- Brown, T. A.; Jones, M. K.; Powell, W.; Allaby, R. G. (2009). "The complex origins of domesticated crops in the Fertile Crescent" (PDF). Trends in Ecology & Evolution. 24 (2): 103–109. Bibcode:2009TEcoE..24..103B. doi:10.1016/j.tree.2008.09.008. PMID 19100651. Archived (PDF) from the original on 13 February 2016. Retrieved 8 November 2018.
- Jacques Cauvin (2000). The Birth of the Gods and the Origins of Agriculture, p. 53. Cambridge University Press. ISBN 978-0-521-65135-6. Retrieved 15 August 2012.
- Riehl, Simone; Zeidi, Mohsen; Conard, Nicholas (5 July 2013). "Emergence of Agriculture in the Foothills of the Zagros Mountains of Iran". Science. 341 (6141): 65–7. Bibcode:2013Sci...341...65R. doi:10.1126/science.1236743. PMID 23828939. S2CID 45375155. Archived from the original on 23 May 2020. Retrieved 8 November 2018.
- Peltenburg, E.J.; Wasse, Alexander; Council for British Research in the Levant (2004). Maya Haïdar Boustani, Flint workshops of the Southern Beqa' valley (Lebanon): preliminary results from Qar'oun* in Neolithic revolution: new perspectives on southwest Asia in light of recent discoveries on Cyprus. Oxbow Books. ISBN 978-1-84217-132-5.
- He, Keyang; Lu, Houyuan; Zhang, Jianping; Wang, Can; Huan, Xiujia (7 June 2017). "Prehistoric evolution of the dualistic structure mixed rice and millet farming in China". The Holocene. 27 (12): 1885–1898. Bibcode:2017Holoc..27.1885H. doi:10.1177/0959683617708455. S2CID 133660098. Archived from the original on 20 November 2021. Retrieved 23 January 2019.
- Bellwood, Peter (9 December 2011). "The Checkered Prehistory of Rice Movement Southwards as a Domesticated Cereal – from the Yangzi to the Equator" (PDF). Rice. 4 (3–4): 93–103. Bibcode:2011Rice....4...93B. doi:10.1007/s12284-011-9068-9. S2CID 44675525. Archived (PDF) from the original on 24 January 2019. Retrieved 23 January 2019.
- Fuller, D. Q. (2007). "Contrasting Patterns in Crop Domestication and Domestication Rates: Recent Archaeobotanical Insights from the Old World". Annals of Botany. 100 (5): 903–924. doi:10.1093/aob/mcm048. PMC 2759199. PMID 17495986.
- Siddiqi, Mohammad Rafiq (2001). Tylenchida: Parasites of Plants and Insects. CABI.
- Thacker, Christopher (1985). The history of gardens. Berkeley: University of California Press. p. 57. ISBN 978-0-520-05629-9.
- Webber, Herbert John (1967–1989). Chapter I. History and Development of the Citrus Industry Archived 23 May 2016 at the Portuguese Web Archive in Origin of Citrus, Vol. 1. University of California
- Molina, J.; Sikora, M.; Garud, N.; Flowers, J. M.; Rubinstein, S.; Reynolds, A.; Huang, P.; Jackson, S.; Schaal, B. A.; Bustamante, C. D.; Boyko, A. R.; Purugganan, M. D. (2011). "Molecular evidence for a single evolutionary origin of domesticated rice". Proceedings of the National Academy of Sciences. 108 (20): 8351–83516. Bibcode:2011PNAS..108.8351M. doi:10.1073/pnas.1104686108. PMC 3101000. PMID 21536870.
- Zhang, Jianping; Lu, Houyuan; Gu, Wanfa; Wu, Naiqin; Zhou, Kunshu; Hu, Yayi; Xin, Yingjun; Wang, Can; Kashkush, Khalil (17 December 2012). "Early Mixed Farming of Millet and Rice 7800 Years Ago in the Middle Yellow River Region, China". PLOS ONE. 7 (12) e52146. Bibcode:2012PLoSO...752146Z. doi:10.1371/journal.pone.0052146. PMC 3524165. PMID 23284907.
- Bayliss-Smith, Tim; Golson, Jack; Hughes, Philip (2017). "Phase 4: Major Disposal Channels, Slot-Like Ditches and Grid-Patterned Fields". In Golson, Jack; Denham, Tim; Hughes, Philip; Swadling, Pamela; Muke, John (eds.). Ten Thousand Years of Cultivation at Kuk Swamp in the Highlands of Papua New Guinea. terra australis. Vol. 46. ANU Press. pp. 239–268. ISBN 978-1-76046-116-4.
- Mahdi, Waruno (1999). "The Dispersal of Austronesian boat forms in the Indian Ocean". In Blench, Roger; Spriggs, Matthew (eds.). Archaeology and Language III: Artefacts languages, and texts. One World Archaeology. Vol. 34. Routledge. pp. 144–179. ISBN 978-0-415-10054-0.
- Blench, Roger (2010). "Evidence for the Austronesian Voyages in the Indian Ocean" (PDF). In Anderson, Atholl; Barrett, James H.; Boyle, Katherine V. (eds.). The Global Origins and Development of Seafaring. McDonald Institute for Archaeological Research. pp. 239–248. ISBN 978-1-902937-52-6. Archived (PDF) from the original on 28 July 2019. Retrieved 23 January 2019.
- Beaujard, Philippe (August 2011). "The first migrants to Madagascar and their introduction of plants: linguistic and ethnological evidence" (PDF). Azania: Archaeological Research in Africa. 46 (2): 169–189. doi:10.1080/0067270X.2011.580142. S2CID 55763047. Archived (PDF) from the original on 21 November 2021. Retrieved 11 July 2019.
- Walter, Annie; Lebot, Vincent (2007). Gardens of Oceania. IRD Éditions-CIRAD. ISBN 978-1-86320-470-5.
- Martin, Nicolas; Thibeault, Adrien; Varadzinová, Lenka; Usai, Donatella; Ambrose, Stanley H.; Antoine, Daniel; Brukner Havelková, Petra; Honegger, Matthieu; Irish, Joel D.; Jesse, Friederike; Maréchal, Laura; Osypińska, Marta; Osypiński, Piotr; Santos, Frédéric; Vanderesse, Nicolas (15 April 2025). "Enamel–dentine junction morphology reveals population replacement and mobility in the late prehistoric Middle Nile Valley". Proceedings of the National Academy of Sciences. 122 (15) e2419122122. Bibcode:2025PNAS..12219122M. doi:10.1073/pnas.2419122122. PMC 12012513. PMID 40163762.
- Fage, J. D.; Clark, John Desmond; Oliver, Roland Anthony (29 August 1975). The Cambridge History of Africa. Cambridge University Press. ISBN 978-0-521-21592-3 – via Google Books.
- Smith, Philip E. L. (1976). "Stone-Age Man on the Nile". Scientific American. 235 (2): 30–41. Bibcode:1976SciAm.235b..30S. doi:10.1038/scientificamerican0876-30. ISSN 0036-8733.
With the benefit of hindsight we can now see that many Late Paleolithic peoples in the Old World were poised on the brink of plant cultivation and animal husbandry as an alternative to the hunter-gatherer's way of life
- Johannessen, S.; Hastorf, C. A. (eds.). Corn and Culture in the Prehistoric New World. Westview Press.
- Graeme Barker (2009). The Agricultural Revolution in Prehistory: Why Did Foragers Become Farmers?. Oxford University Press. p. 252. ISBN 978-0-19-955995-4. Retrieved 4 January 2012.
- Fullagar, Richard; Field, Judith; Denham, Tim; Lentfer, Carol (2006). "Early and mid Holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp.) and other plants at Kuk Swamp in the highlands of Papua New Guinea". Journal of Archaeological Science. 33 (5): 595–614. Bibcode:2006JArSc..33..595F. doi:10.1016/j.jas.2005.07.020.
- Loy, Thomas H.; Spriggs, Matthew; Wickler, Stephen (1992). "Direct evidence for human use of plants 28,000 years ago: starch residues on stone artefacts from the northern Solomon Islands". Antiquity. 66 (253): 898–912. doi:10.1017/S0003598X00044811. ISSN 0003-598X.
- Bellwood 2004, pp. 68–69.
- Bellwood 2004, pp. 74, 118.
- Subbaraman, Nidhi (12 December 2012). "Art of cheese-making is 7,500 years old". Nature News. doi:10.1038/nature.2012.12020. S2CID 180646880. Archived from the original on 8 May 2021. Retrieved 17 January 2020.
- Bellwood 2004, pp. 68–72.
- Consortium, the Genographic; Cooper, Alan (9 November 2010). "Ancient DNA from European Early Neolithic Farmers Reveals Their Near Eastern Affinities". PLOS Biology. 8 (11) e1000536. doi:10.1371/journal.pbio.1000536. ISSN 1545-7885. PMC 2976717. PMID 21085689.
- Original text published under Creative Commons license CC BY 4.0: Shukurov, Anvar; Sarson, Graeme R.; Gangal, Kavita (2014). "The Near-Eastern Roots of the Neolithic in South Asia". PLOS ONE. 9 (5) e95714. Bibcode:2014PLoSO...995714G. doi:10.1371/journal.pone.0095714. PMC 4012948. PMID 24806472.
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License "Deed - Attribution 4.0 International - Creative Commons". Archived from the original on 16 October 2017. Retrieved 12 May 2019.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) -
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License "Deed - Attribution 4.0 International - Creative Commons". Archived from the original on 16 October 2017. Retrieved 12 May 2019.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) Turbón, Daniel; Arroyo-Pardo, Eduardo (5 June 2014). "Ancient DNA Analysis of 8000 B.C. Near Eastern Farmers Supports an Early Neolithic Pioneer Maritime Colonization of Mainland Europe through Cyprus and the Aegean Islands". PLOS Genetics. 10 (6) e1004401. doi:10.1371/journal.pgen.1004401. ISSN 1553-7404. PMC 4046922. PMID 24901650. - Coningham, Robin; Young, Ruth (2015). The Archaeology of South Asia: From the Indus to Asoka, c. 6500 BCE–200 CE. Cambridge University Press. p. 111. ISBN 978-1-316-41898-7.
-
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License "Deed - Attribution 4.0 International - Creative Commons". Archived from the original on 16 October 2017. Retrieved 12 May 2019.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) Shukurov, Anvar; Sarson, Graeme R.; Gangal, Kavita (7 May 2014). "The Near-Eastern Roots of the Neolithic in South Asia". PLOS ONE. 9 (5) e95714. Bibcode:2014PLoSO...995714G. doi:10.1371/journal.pone.0095714. ISSN 1932-6203. PMC 4012948. PMID 24806472. - Scarre, Christopher (2005). "The World Transformed: From Foragers and Farmers to States and Empires". The Human Past: World Prehistory and the Development of Human Societies. London: Thames & Hudson. p. 188. ISBN 0-500-28531-4.
- Charles E. Redman (1978). Rise of Civilization: From Early Hunters to Urban Society in the Ancient Near East. San Francisco: Freeman.
- Hayden, Brian (1992). "Models of Domestication". In Anne Birgitte Gebauer and T. Douglas Price (ed.). Transitions to Agriculture in Prehistory. Madison: Prehistory Press. pp. 11–18.
- "The Neolithic Revolution | Early World Civilizations". courses.lumenlearning.com. Retrieved 18 October 2023.
- Sauer, Carl O. (1952). Agricultural origins and dispersals. Cambridge, MA: MIT Press.
- Binford, Lewis R. (1968). "Post-Pleistocene Adaptations". In Sally R. Binford and Lewis R. Binford (ed.). New Perspectives in Archaeology. Chicago: Aldine Publishing Company. pp. 313–342.
- Rindos, David (December 1987). The Origins of Agriculture: An Evolutionary Perspective. Academic Press. ISBN 978-0-12-589281-0.
- Richerson, Peter J.; Boyd, Robert (2001). "Was Agriculture Impossible during the Pleistocene but Mandatory during the Holocene?". American Antiquity. 66 (3): 387–411. doi:10.2307/2694241. JSTOR 2694241. S2CID 163474968.
- Wright, Ronald (2004). A Short History of Progress. Anansi. ISBN 978-0-88784-706-6.
- Grinin L.E. "Production Revolutions and Periodization of History: A Comparative and Theoretic-mathematical Approach". Social Evolution & History. Volume 6, Number 2. September 2007. Archived 20 January 2012 at the Wayback Machine.
- Hole, Frank (29 August 1984). "A Reassessment of the Neolithic Revolution". Paléorient. 10 (2): 49–60. doi:10.3406/paleo.1984.939. Archived from the original on 17 June 2022. Retrieved 29 August 2022 – via Persée.
- James C. Scott,Against the Grain: a Deep History of the Earliest States, NJ: Yale UP, (2017), "The world's population in 10 000 BC, according to a careful estimate was roughly 4 million. A full five thousand years later it has risen only to 5 million...One likely explanation for this apparent human progress in subsistance techniques together with a long period of demographic stagnation is that epidemologically this was perhaps the most lethal period in human history".
- "What was the Neolithic Revolution?". National Geographic. 5 April 2019. Archived from the original on 9 October 2022. Retrieved 18 June 2023.
- Sands DC, Morris CE, Dratz EA, Pilgeram A (2009). "Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods". Plant Sci (Review). 177 (5): 377–389. Bibcode:2009PlnSc.177..377S. doi:10.1016/j.plantsci.2009.07.011. PMC 2866137. PMID 20467463.
- O'Keefe JH, Cordain L (2004). "Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer". Mayo Clin Proc (Review). 79 (1): 101–108. doi:10.4065/79.1.101. PMID 14708953.
- Shermer, Michael (2001). The Borderlands of Science. Oxford University Press. p. 250.
- Hermanussen, Michael; Poustka, Fritz (July–September 2003). "Stature of early Europeans". Hormones (Athens). 2 (3): 175–178. doi:10.1159/000079404. PMID 17003019. S2CID 85210429. Archived from the original on 2 April 2012. Retrieved 12 June 2014.
- Eagly, Alice H.; Wood, Wendy (June 1999). "The Origins of Sex Differences in Human Behavior: Evolved Dispositions Versus Social Roles". American Psychologist. 54 (6): 408–423. doi:10.1037/0003-066x.54.6.408. Archived from the original on 17 August 2000.
- Diamond, Jared (May 1987). "The Worst Mistake in the History of the Human Race". Discover Magazine: 64–66. Archived from the original on 10 November 2019. Retrieved 26 July 2021.
- Peterson, V. Spike (3 July 2014). "Sex Matters". International Feminist Journal of Politics. 16 (3): 389–409. doi:10.1080/14616742.2014.913384. ISSN 1461-6742. S2CID 147633811.
- Strang, Veronica (2014). "Lording It over the Goddess: Water, Gender, and Human-Environmental Relations". Journal of Feminist Studies in Religion. 30 (1): 85–109. doi:10.2979/jfemistudreli.30.1.85. JSTOR 10.2979/jfemistudreli.30.1.85. S2CID 143567275.
- Parsons, Talcott (1944). ""The Theoretical Development of the Sociology of Religion: A Chapter in the History of Modern Social Science."". Journal of the History of Ideas. 5 (2): 176–190. doi:10.2307/2707383. JSTOR 2707383.
- Sherratt, A (1981). "Plough and pastoralism: aspects of the secondary products revolution". In Hodder, Ian; Isaac, Glynn Llywelyn; Hammond, Norman (eds.). Pattern of the Past: Studies in honour of David Clarke. Cambridge: Cambridge University Press. pp. 261–305. ISBN 978-0-521-22763-6.
- Furuse, Y.; Suzuki, A.; Oshitani, H. (2010). "Origin of measles virus: Divergence from rinderpest virus between the 11th and 12th centuries". Virology Journal. 7 52. doi:10.1186/1743-422X-7-52. PMC 2838858. PMID 20202190.
- Key, Felix M.; Posth, Cosimo; Esquivel-Gomez, Luis R.; Hübler, Ron; Spyrou, Maria A.; Neumann, Gunnar U.; Furtwängler, Anja; Sabin, Susanna; Burri, Marta; Wissgott, Antje; Lankapalli, Aditya Kumar; Vågene, Åshild J.; Meyer, Matthias; Nagel, Sarah; Tukhbatova, Rezeda; Khokhlov, Aleksandr; Chizhevsky, Andrey; Hansen, Svend; Belinsky, Andrey B.; Kalmykov, Alexey; Kantorovich, Anatoly R.; Maslov, Vladimir E.; Stockhammer, Philipp W.; Vai, Stefania; Zavattaro, Monica; Riga, Alessandro; Caramelli, David; Skeates, Robin; Beckett, Jessica; Gradoli, Maria Giuseppina; Steuri, Noah; Hafner, Albert; Ramstein, Marianne; Siebke, Inga; Lösch, Sandra; Erdal, Yilmaz Selim; Alikhan, Nabil-Fareed; Zhou, Zhemin; Achtman, Mark; Bos, Kirsten; Reinhold, Sabine; Haak, Wolfgang; Kühnert, Denise; Herbig, Alexander; Krause, Johannes (March 2020). "Emergence of human-adapted Salmonella enterica is linked to the Neolithization process". Nature Ecology & Evolution. 4 (3): 324–333. Bibcode:2020NatEE...4..324K. doi:10.1038/s41559-020-1106-9. ISSN 2397-334X. PMC 7186082. PMID 32094538.
- Halcrow, S. E.; Harris, N. J.; Tayles, N.; Ikehara-Quebral, R.; Pietrusewsky, M. (2013). "From the mouths of babes: Dental caries in infants and children and the intensification of agriculture in mainland Southeast Asia". American Journal of Physical Anthropology. 150 (3): 409–420. Bibcode:2013AJPA..150..409H. doi:10.1002/ajpa.22215. PMID 23359102.
Bibliography
- Bailey, Douglass. (2001). Balkan Prehistory: Exclusions, Incorporation and Identity. Routledge Publishers. ISBN 0-415-21598-6.
- Bailey, Douglass. (2005). Prehistoric Figurines: Representation and Corporeality in the Neolithic. Routledge Publishers. ISBN 0-415-33152-8.
- Balter, Michael (2005). The Goddess and the Bull: Catalhoyuk, An Archaeological Journey to the Dawn of Civilization. New York: Free Press. ISBN 0-7432-4360-9.
- Bellwood, Peter (2004). First Farmers: The Origins of Agricultural Societies. Blackwell. ISBN 0-631-20566-7.
- Bocquet-Appel, Jean-Pierre, editor and Ofer Bar-Yosef, editor, The Neolithic Demographic Transition and its Consequences, Springer (21 October 2008), hardcover, 544 pages, ISBN 978-1-4020-8538-3, trade paperback and Kindle editions are also available.
- Cohen, Mark Nathan (1977)The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture. New Haven and London: Yale University Press. ISBN 0-300-02016-3.
- Diamond, Jared (2002). "Evolution, Consequences and Future of Plant and Animal Domestication". Nature, Vol 418.
- Harlan, Jack R. (1992). Crops & Man: Views on Agricultural Origins ASA, CSA, Madison, WI. Hort 306 - READING 3-1
- Wright, Gary A. (1971). "Origins of Food Production in Southwestern Asia: A Survey of Ideas" Current Anthropology, Vol. 12, No. 4/5 (Oct.–Dec. 1971), pp. 447–477
- Kuijt, Ian; Finlayson, Bill. (2009). "Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley". PNAS, Vol. 106, No. 27, pp. 10966–10970.
wikipedia, wiki, book, books, library, article, read, download, free, free download, mobile, phone, android, ios, apple, mobile phone, pc, web, computer, Information about Neolithic Revolution, What is Neolithic Revolution? What does Neolithic Revolution mean?
Leave a Reply
Want to join the discussion?Feel free to contribute!